---
title:
- RSA - Asimetricna kriptografija i primena
author:
- Aleksej Jocic

theme:
- Warsaw
colortheme:
- orchid
---

# Uvod
- Simetricna kriptografija
	Isti kljuc za sifrovanje i desifrovanje

	$10101 \oplus 11001 = 01100$

	$(m \oplus k) \oplus k =m \oplus (k \oplus k)= m \oplus 0= m$
	- Problem bezbedne razmene kljuceva
	- Problem autenticnosti

# Uvod
- Asiemtricna kriptografija
	- Razliciti kljucevi za sifrovanje i desifrovanje

	-	$f(m,k1)=c$

	-	$f(c,k2)=m$
	- Kljuc za sifrovanje je javno dostupan, (svi znaju $k1$)
	- Sifrovanje privatnim kljucem korisceno kao digitalni potpis

	-	$f(m,k2)=c$

	-	$f(c,k1)=m$

# RSA
- RSA
	- 1977\. Ron Rivest, Adi Shamir, Leonard Adleman
	- 1976\. Diffie–Hellman razmena kljuceva

	- $g^a \equiv A \mod p$

	- $g^b \equiv B \mod p$

	- $A^b \equiv (g^a)^b$$\equiv (g^b)^a$$\equiv B^a$$\mod p$

# RSA
<div>
![Diffie–Hellman](slides/rsa/dhke.png)
</div>

# RSA
## Mala Fermaova teorema
Ako je $p$ prost broj, za svako $a$ vazi:


$a^{p-1} \equiv 1 \mod p$



## Posledica
Ako su $p$ i $q$ prosti brojevi, za svako $a$ vazi:


$a^{(p-1)(q-1)}$$\equiv ({a^{p-1}})^{q-1}$$\equiv 1 \mod q$


$a^{(p-1)(q-1)}$$\equiv ({a^{q-1}})^{p-1}$$\equiv 1 \mod p$


$(a^{(p-1)(q-1)}-1)$ je deljivo i sa $p$ i $q$.


$p$ i $q$ su prosti, pa mora da je deljivo i sa $p \cdot q$.


# RSA

## Posledica
$a^{(p-1)(q-1)} \equiv 1 \mod pq$


Takodje:

$a^{x(p-1)(q-1)}$$\equiv ({a^x})^{(p-1)(q-1)}$$\equiv 1 \mod pq$


$a^{x(p-1)(q-1)+1} \equiv a \mod pq$

\pause
## Trazimo
$e$ i $d$ tako da:


$({a^e})^d \equiv a^{ed} \equiv a^{x(p-1)(q-1)+1} \mod pq$


Odnosno:

$ed \equiv 1 \mod (p-1)(q-1)$ 


$d$ je modularni inverz od $e$ pod modulom $(p-1)(q-1)$


Mozemo koristiti `Produzeni Euklidov algoritam`.


U buduce cemo oznacavati $n=pq$, a $\varphi(n)=(p-1)(q-1)$


$a^{\varphi(n)} \equiv 1 \mod n$


$a^{ed} \equiv a^{x\varphi(n)+1}$$\equiv a \mod n$


# RSA

- Problem faktorisanja $n=pq$
- $\varphi(n)=(p-1)(q-1)$ nije poznato bez $p$ i $q$
- $d$ kao modularni inverz od $e$ nije poznat bez $\varphi(n)$
- $d$ mozemo da cuvamo tajnim cak i ako objavimo $e$ i $n$ javno


# RSA
- Generisanje kljuceva
	- Nadjimo velike proste brojeve $p$ i $q$


		Testovi prostosti brojeva (Fermaov test)
	- Generisemo $n=pq$
	- Nadjimo $e$ koji je uzajamno prost sa $(p-1)(q-1)$
	- Nadjimo $d$ koriscenjem Produzenog Euklidovog algoritma
	- Mozemo zaboraviti $p$ i $q$, jer nam vise ne trebaju

# Sifrovanje i potpisivanje

- Javni kljuc se sastoji od brojeva $e$ i $n$

	$m^e \equiv C \mod n$

- Privatni kljuc se sastoji od brojeva $d$ i $n$

	$C^d \equiv m \mod n$

- Digitalni potpis se postize sifrovanjem sa privatim kljucem

	$m^d \equiv S \mod n$

- Provera digitalnog potpisa:

	$S^e \equiv m \mod n$

# Prodruzeni Euklidov algoritam

```
def egcd(a, b):
    if a == 0:
        return (b, 0, 1)
    g, y, x = egcd(b%a,a)
    return (g, x - (b//a) * y, y)

def modinv(a, m):
    g, x, y = egcd(a, m)
    if g != 1:
        raise Exception('No modular inverse')
    return x%m
```

# Napadi na RSA

- Napadi na RSA
	- Pogadjanje poruke, potrebno dopunjavanje poruke random podacima (padding)
	- Premali eksponent $e$, korenovanje sifrovanog teksta za male poruke (veliko $e$)
	- Koriscenje istog eksponenta za vise kljuceva, napad koriscenjem Kineske teoreme o ostatku (random izabrano $e$)
	- Desifrovanje sumnjivog teksta, $(x^e \cdot C)^d \equiv (x^e)^d \cdot C^d \equiv x \cdot m \mod n$

# Primena

## GNU Privacy Guard
- 1999\.  Werner Koch
- Generisanje kljuca: `gpg --gen-key`
- Lista javnih kljuceva: `gpg --list-keys`
- Export privatnih kljuceva: `gpg --export-secret-keys --output backup.gpg`
- Upload kljuceva: `gpg --send-key [KEYID]`
- Sifrovanje poruke: `gpg -e file.txt`
- Desifrovanje: `gpg -d file.txt`
- Potpisivanje poruke ili fajla: `gpg -s file.exe`
- Potpisivanje kljuca: `gpg --sign-key [KEYID]`
- ASCII output: `gpg --armor -se file.txt`
- GPG password manager: `gpg --armor -c passwords.txt`

# Primena

## Git
- Podesavanje kljuca: `git config --global user.signingkey [KEYID]`
- Potpisivanje komita: `git commit -S`
<div>
![Github signed commits](slides/rsa/github-verified.png)
</div>

# Primena

## SSH
- Generisanje kljuca: `ssh-keygen [-f filename]`
- Dodavanje kljuca na remote masinu: `ssh-copy-id [-i filename] user@hostname`
- `~/.ssh/authorized_keys`

# The Onion Router

## Tor
- 1990\.-te United States Naval Research Laboratory (Paul Syverson,Michael G. Reed,David Goldschlag)
- 20.9.2002. prva verzija Tor-a (javni projekat, anonimnosti u masi)


# The Onion Router

<div>
![How Tor works](slides/rsa/tor.png)
</div>

# Onion hidden services

<div>
![How hidden services works](slides/rsa/tor-onion-services.png)
</div>

# The Onion Router

- Napadi na Tor
	- Tor ne stiti od vremenske korelacije (pristup sa obe strane veze)
	- Slabosti u aplikacijama koje koriste Tor
	- Pogresno konfigurisane aplikacije
	- DNS Leak

# Hvala

Hvala na paznji!