diff --git a/deepseek-coder-android-termux.md b/deepseek-coder-android-termux.md new file mode 100644 index 0000000..9cf8a66 --- /dev/null +++ b/deepseek-coder-android-termux.md @@ -0,0 +1,313 @@ +Hello! ๐Ÿ‘ฝ + +**DeepSeek-Coder** is a powerful AI model designed to assist with coding-related tasks, including code generation, debugging, optimization, and more. Hereโ€™s how you can use it: + +### **1. Online Access (Web & Playground)** +You can try **DeepSeek-Coder** for free on the official website: +๐Ÿ”— [https://deepseek.com](https://deepseek.com) + +Just type your coding questions (e.g., "Write a Python function to sort a list") and get instant AI-generated responses. + +### **2. API Access** +If you want to integrate **DeepSeek-Coder** into your applications, you can use the API. Check the official documentation for details. + +### **3. Local Deployment (Open-Source Models)** +DeepSeek provides open-source models like **DeepSeek-Coder 6.7B/33B** on Hugging Face. You can download and run them locally: +๐Ÿ”— [Hugging Face Model Hub](https://huggingface.co/deepseek-ai) + +#### **Example: Running with Transformers** +```python +from transformers import AutoModelForCausalLM, AutoTokenizer + +model_name = "deepseek-ai/deepseek-coder-6.7b-instruct" +tokenizer = AutoTokenizer.from_pretrained(model_name) +model = AutoModelForCausalLM.from_pretrained(model_name) + +input_text = "Write a Python function to reverse a string." +inputs = tokenizer(input_text, return_tensors="pt") +outputs = model.generate(**inputs, max_length=200) +print(tokenizer.decode(outputs[0], skip_special_tokens=True)) +``` + +### **4. Supported Features** +๐Ÿ‘ฝ **Code Generation** (Python, C++, Java, etc.) +๐Ÿ‘ฝ **Code Debugging & Explanation** +๐Ÿ‘ฝ **Code Optimization & Refactoring** +๐Ÿ‘ฝ **Docstring & Comment Generation** +๐Ÿ‘ฝ **Algorithm & Data Structure Help** + +### **5. Tips for Best Results** +- Be **specific** in your prompts (e.g., "Write a Python function to merge two sorted lists"). +- Provide **context** if needed (e.g., "I'm working with PyTorch, help me fix this CUDA error"). +- Ask for **explanations** if you want to understand the code. + +--- + +**Q: Can i run deepseekcoder on android-linux?** + +A: Yes! You can run **DeepSeek-Coder** on an **Android-Linux** environment (e.g., using **Termux** or a **Linux chroot**), but with some limitations depending on the model size and your device's hardware. Here's how: + +### **Option 1: Running in Termux (Android)** +#### **Requirements**: +- **Termux** (from [F-Droid](https://f-droid.org/en/packages/com.termux/)) +- **Python & pip** (install in Termux) +- **A lightweight model** (e.g., `deepseek-coder-1.3b` or quantized versions) + +#### **Steps**: +1. **Install Termux & dependencies**: + ```bash + pkg update && pkg upgrade + pkg install python git wget + pip install transformers torch sentencepiece + ``` +2. **Load the model** (example with `deepseek-coder-1.3b`): + ```python + from transformers import AutoModelForCausalLM, AutoTokenizer + + model_name = "deepseek-ai/deepseek-coder-1.3b-instruct" + tokenizer = AutoTokenizer.from_pretrained(model_name) + model = AutoModelForCausalLM.from_pretrained(model_name) + + prompt = "Write a Python function to reverse a string." + inputs = tokenizer(prompt, return_tensors="pt") + outputs = model.generate(**inputs, max_length=200) + print(tokenizer.decode(outputs[0], skip_special_tokens=True)) + ``` + - **Note**: Larger models (6.7B/33B) may not fit in RAM on most phones. + +3. **Use quantized models** (for lower RAM usage): + - Try **GGUF-quantized** models via `llama.cpp` (works in Termux): + ```bash + pip install llama-cpp-python + wget https://huggingface.co/TheBloke/deepseek-coder-6.7B-instruct-GGUF/resolve/main/deepseek-coder-6.7b-instruct.Q4_K_M.gguf + ``` + Then load it with: + ```python + from llama_cpp import Llama + llm = Llama(model_path="deepseek-coder-6.7b-instruct.Q4_K_M.gguf") + print(llm("Write a Python function to reverse a string.")) + ``` + +### **Option 2: Linux Deploy (Full Linux on Android)** +If your device supports it (e.g., with **Linux Deploy** or **UserLAnd**), you can run a full Linux distro (Ubuntu/Debian) and follow standard Linux instructions: +```bash +# In the Linux environment +git clone https://github.com/deepseek-ai/deepseek-coder +cd deepseek-coder +pip install -r requirements.txt +python run_inference.py +``` +- **Pros**: Full GPU support (if your phone has a Linux-compatible GPU). +- **Cons**: Complex setup, requires root/unlocked bootloader for some devices. + + +### **Performance Considerations** +- **RAM**: 1.3B needs ~3GB RAM, 6.7B needs ~16GB (quantized helps). +- **Storage**: Models take 2GB+ (1.3B) to 40GB+ (33B). +- **Speed**: Expect slow inference on CPUs (~1 token/sec). + + +### **Alternative: Use the API** +If local execution is too slow, use the **DeepSeek API** (if available) via Python: +```python +import requests +response = requests.post("https://api.deepseek.com/coder", json={"prompt": "Write Python code to reverse a string"}) +print(response.json()) +``` + +--- + +**Q: How storage would be installing deepseek coder thru termux?** + +A: Installing **DeepSeek-Coder** in **Termux** (Android) requires careful storage management, as AI models are large. Here's a breakdown of storage needs and optimization tips: + +--- + +### **1. Model Sizes (Approximate)** +| Model | Disk Space (Full Precision) | Quantized (GGUF) | +|----------------------|----------------------------|------------------| +| DeepSeek-Coder 1.3B | ~2.5 GB | ~0.8 GB (Q4_K_M) | +| DeepSeek-Coder 6.7B | ~13 GB | ~4 GB (Q4_K_M) | +| DeepSeek-Coder 33B | ~60 GB+ | ~20 GB (Q4_K_M) | + +**Note**: Quantized models (e.g., GGUF) reduce size but may lose slight accuracy. + +--- + +### **2. Storage Requirements in Termux** +- **Termux Limits**: + - Default storage: ~10-15 GB (varies by device). + - External SD card support (needs manual setup). +- **Recommended for Termux**: + - Use **1.3B model** (quantized: ~0.8 GB) or **6.7B quantized** (~4 GB) if your device has space. + - Avoid 33B (too large for most phones). + +--- + +### **3. Step-by-Step Installation (Optimized for Storage)** +#### **Option A: Small Setup (1.3B Quantized)** +```bash +# Install dependencies +pkg update && pkg upgrade +pkg install python git wget +pip install llama-cpp-python + +# Download a quantized 1.3B model (GGUF format) +wget https://huggingface.co/TheBloke/deepseek-coder-1.3B-instruct-GGUF/resolve/main/deepseek-coder-1.3b-instruct.Q4_K_M.gguf + +# Run inference +python -c " +from llama_cpp import Llama +llm = Llama(model_path='deepseek-coder-1.3b-instruct.Q4_K_M.gguf') +print(llm('Write a Python function to reverse a string.')) +" +``` +**Storage Used**: ~1 GB (model + dependencies). + +--- + +#### **Option B: Medium Setup (6.7B Quantized)** +```bash +# Download 6.7B quantized (~4 GB) +wget https://huggingface.co/TheBloke/deepseek-coder-6.7B-instruct-GGUF/resolve/main/deepseek-coder-6.7b-instruct.Q4_K_M.gguf + +# Run with reduced RAM usage (--n_ctx 512 lowers memory) +python -c " +from llama_cpp import Llama +llm = Llama(model_path='deepseek-coder-6.7b-instruct.Q4_K_M.gguf', n_ctx=512) +print(llm('Explain bubble sort in Python.')) +" +``` +**Storage Used**: ~4.5 GB. + +--- + +### **4. Storage Optimization Tips** +1. **Use Quantized Models**: + - Prefer `Q4_K_M` or `Q5_K_M` GGUF models (balance size/quality). + - Find them on [TheBloke's Hugging Face](https://huggingface.co/TheBloke). + +2. **Store Models on SD Card**: + - Symlink the model to Termux: + ```bash + ln -s /storage/XXXX-XXXX/deepseek-coder.gguf ~/deepseek-model.gguf + ``` + (Replace `XXXX-XXXX` with your SD card path). + +3. **Clean Cache**: + ```bash + pip cache purge + rm -rf ~/.cache/huggingface + ``` + +4. **Use `termux-setup-storage`**: + Grants Termux access to phone storage for extra space. + +--- + +### **5. Expected Performance** +- **1.3B Model**: ~1-2 tokens/sec on CPU (usable for small tasks). +- **6.7B Model**: ~0.5-1 token/sec (slow but functional). +- **RAM Usage**: 1.3B needs ~1.5GB RAM; 6.7B needs ~6GB (close Termux apps to free memory). + +--- + +### **Alternative: Cloud/API** +If storage is critical, use the **DeepSeek API** (if available) instead of local models: +```python +import requests +response = requests.post("https://api.deepseek.com/v1/chat", json={"model": "deepseek-coder", "messages": [{"role": "user", "content": "Write Fibonacci in Python"}]}) +print(response.json()) +``` + +--- + +### **Summary** +- **For most phones**: 1.3B quantized (~1GB) is practical. +- **High-end phones**: 6.7B quantized (~4GB) if storage allows. +- **Avoid 33B** (unless you have a rooted device with 64GB+ free). + +Let me know if you need help setting it up! + +--- + +**Q: What u suggest for android/samsung galaxy a53 model 1.3B or 6.7B ?** + +A: For a **Samsung Galaxy A53** (typically with **6GB RAM** and **128GB storage**), hereโ€™s my recommendation for running **DeepSeek-Coder** locally in Termux: + +--- + +### **Recommended Choice: `1.3B Quantized` (GGUF)** +#### **Why?** +1. **RAM Limits**: + - The A53 has **6GB RAM**, but Android uses ~2-3GB for the OS, leaving ~3-4GB free. + - The **1.3B model** needs ~1.5GB RAM (quantized), while the **6.7B** needs ~6GB (too close to the limit). + +2. **Storage**: + - 1.3B quantized: **~0.8GB** (fits easily). + - 6.7B quantized: **~4GB** (manageable but tight if you have other apps/media). + +3. **Speed**: + - 1.3B: **~2-3 tokens/sec** (usable for small tasks). + - 6.7B: **~0.5-1 token/sec** (painfully slow on mobile CPU). + +--- + +### **How to Set Up 1.3B in Termux** +```bash +# Install dependencies +pkg update && pkg upgrade +pkg install python git wget +pip install llama-cpp-python + +# Download the quantized 1.3B model (Q4_K_M) +wget https://huggingface.co/TheBloke/deepseek-coder-1.3B-instruct-GGUF/resolve/main/deepseek-coder-1.3b-instruct.Q4_K_M.gguf + +# Run inference (adjust n_ctx for RAM savings) +python -c " +from llama_cpp import Llama +llm = Llama(model_path='deepseek-coder-1.3b-instruct.Q4_K_M.gguf', n_ctx=512) +print(llm('Write a Python function to check if a number is prime.')) +" +``` + +--- + +### **If You Still Want to Try 6.7B** +#### **Requirements**: +- Close all background apps. +- Enable **swap memory** (if rooted) or use **zRAM** (advanced Termux tweaks). +- Expect **very slow speeds** (~1 word every 2 seconds). + +```bash +wget https://huggingface.co/TheBloke/deepseek-coder-6.7B-instruct-GGUF/resolve/main/deepseek-coder-6.7b-instruct.Q4_K_M.gguf +python -c " +from llama_cpp import Llama +llm = Llama(model_path='deepseek-coder-6.7b-instruct.Q4_K_M.gguf', n_ctx=256) # lower ctx to save RAM +print(llm('Explain Python decorators briefly.')) +" +``` + +--- + +### **Alternatives** +1. **Use the API** (if available): + No storage/RAM limits, but requires internet. + ```python + import requests + response = requests.post("https://api.deepseek.com/coder", json={"prompt": "Write a Python calculator"}) + print(response.text) + ``` + +2. **Remote Server**: + Run the model on a PC/Raspberry Pi and access it from your phone via `curl`. + +--- + +### **Final Verdict** +- **For daily use**: Stick with **1.3B quantized**. Itโ€™s the only practical option for your A53. +- **For experiments**: Try 6.7B, but expect crashes/slowness. +- **For heavy tasks**: Use the **DeepSeek web app** or API. + + +