AWESOMES/deepseek-coder-android-termux.md
2025-06-24 17:22:52 +00:00

314 lines
11 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

Hello! 👽
**DeepSeek-Coder** is a powerful AI model designed to assist with coding-related tasks, including code generation, debugging, optimization, and more. Heres how you can use it:
### **1. Online Access (Web & Playground)**
You can try **DeepSeek-Coder** for free on the official website:
🔗 [https://deepseek.com](https://deepseek.com)
Just type your coding questions (e.g., "Write a Python function to sort a list") and get instant AI-generated responses.
### **2. API Access**
If you want to integrate **DeepSeek-Coder** into your applications, you can use the API. Check the official documentation for details.
### **3. Local Deployment (Open-Source Models)**
DeepSeek provides open-source models like **DeepSeek-Coder 6.7B/33B** on Hugging Face. You can download and run them locally:
🔗 [Hugging Face Model Hub](https://huggingface.co/deepseek-ai)
#### **Example: Running with Transformers**
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "deepseek-ai/deepseek-coder-6.7b-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
input_text = "Write a Python function to reverse a string."
inputs = tokenizer(input_text, return_tensors="pt")
outputs = model.generate(**inputs, max_length=200)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
### **4. Supported Features**
👽 **Code Generation** (Python, C++, Java, etc.)
👽 **Code Debugging & Explanation**
👽 **Code Optimization & Refactoring**
👽 **Docstring & Comment Generation**
👽 **Algorithm & Data Structure Help**
### **5. Tips for Best Results**
- Be **specific** in your prompts (e.g., "Write a Python function to merge two sorted lists").
- Provide **context** if needed (e.g., "I'm working with PyTorch, help me fix this CUDA error").
- Ask for **explanations** if you want to understand the code.
---
**Q: Can i run deepseekcoder on android-linux?**
A: Yes! You can run **DeepSeek-Coder** on an **Android-Linux** environment (e.g., using **Termux** or a **Linux chroot**), but with some limitations depending on the model size and your device's hardware. Here's how:
### **Option 1: Running in Termux (Android)**
#### **Requirements**:
- **Termux** (from [F-Droid](https://f-droid.org/en/packages/com.termux/))
- **Python & pip** (install in Termux)
- **A lightweight model** (e.g., `deepseek-coder-1.3b` or quantized versions)
#### **Steps**:
1. **Install Termux & dependencies**:
```bash
pkg update && pkg upgrade
pkg install python git wget
pip install transformers torch sentencepiece
```
2. **Load the model** (example with `deepseek-coder-1.3b`):
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
model_name = "deepseek-ai/deepseek-coder-1.3b-instruct"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
prompt = "Write a Python function to reverse a string."
inputs = tokenizer(prompt, return_tensors="pt")
outputs = model.generate(**inputs, max_length=200)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```
- **Note**: Larger models (6.7B/33B) may not fit in RAM on most phones.
3. **Use quantized models** (for lower RAM usage):
- Try **GGUF-quantized** models via `llama.cpp` (works in Termux):
```bash
pip install llama-cpp-python
wget https://huggingface.co/TheBloke/deepseek-coder-6.7B-instruct-GGUF/resolve/main/deepseek-coder-6.7b-instruct.Q4_K_M.gguf
```
Then load it with:
```python
from llama_cpp import Llama
llm = Llama(model_path="deepseek-coder-6.7b-instruct.Q4_K_M.gguf")
print(llm("Write a Python function to reverse a string."))
```
### **Option 2: Linux Deploy (Full Linux on Android)**
If your device supports it (e.g., with **Linux Deploy** or **UserLAnd**), you can run a full Linux distro (Ubuntu/Debian) and follow standard Linux instructions:
```bash
# In the Linux environment
git clone https://github.com/deepseek-ai/deepseek-coder
cd deepseek-coder
pip install -r requirements.txt
python run_inference.py
```
- **Pros**: Full GPU support (if your phone has a Linux-compatible GPU).
- **Cons**: Complex setup, requires root/unlocked bootloader for some devices.
### **Performance Considerations**
- **RAM**: 1.3B needs ~3GB RAM, 6.7B needs ~16GB (quantized helps).
- **Storage**: Models take 2GB+ (1.3B) to 40GB+ (33B).
- **Speed**: Expect slow inference on CPUs (~1 token/sec).
### **Alternative: Use the API**
If local execution is too slow, use the **DeepSeek API** (if available) via Python:
```python
import requests
response = requests.post("https://api.deepseek.com/coder", json={"prompt": "Write Python code to reverse a string"})
print(response.json())
```
---
**Q: How storage would be installing deepseek coder thru termux?**
A: Installing **DeepSeek-Coder** in **Termux** (Android) requires careful storage management, as AI models are large. Here's a breakdown of storage needs and optimization tips:
---
### **1. Model Sizes (Approximate)**
| Model | Disk Space (Full Precision) | Quantized (GGUF) |
|----------------------|----------------------------|------------------|
| DeepSeek-Coder 1.3B | ~2.5 GB | ~0.8 GB (Q4_K_M) |
| DeepSeek-Coder 6.7B | ~13 GB | ~4 GB (Q4_K_M) |
| DeepSeek-Coder 33B | ~60 GB+ | ~20 GB (Q4_K_M) |
**Note**: Quantized models (e.g., GGUF) reduce size but may lose slight accuracy.
---
### **2. Storage Requirements in Termux**
- **Termux Limits**:
- Default storage: ~10-15 GB (varies by device).
- External SD card support (needs manual setup).
- **Recommended for Termux**:
- Use **1.3B model** (quantized: ~0.8 GB) or **6.7B quantized** (~4 GB) if your device has space.
- Avoid 33B (too large for most phones).
---
### **3. Step-by-Step Installation (Optimized for Storage)**
#### **Option A: Small Setup (1.3B Quantized)**
```bash
# Install dependencies
pkg update && pkg upgrade
pkg install python git wget
pip install llama-cpp-python
# Download a quantized 1.3B model (GGUF format)
wget https://huggingface.co/TheBloke/deepseek-coder-1.3B-instruct-GGUF/resolve/main/deepseek-coder-1.3b-instruct.Q4_K_M.gguf
# Run inference
python -c "
from llama_cpp import Llama
llm = Llama(model_path='deepseek-coder-1.3b-instruct.Q4_K_M.gguf')
print(llm('Write a Python function to reverse a string.'))
"
```
**Storage Used**: ~1 GB (model + dependencies).
---
#### **Option B: Medium Setup (6.7B Quantized)**
```bash
# Download 6.7B quantized (~4 GB)
wget https://huggingface.co/TheBloke/deepseek-coder-6.7B-instruct-GGUF/resolve/main/deepseek-coder-6.7b-instruct.Q4_K_M.gguf
# Run with reduced RAM usage (--n_ctx 512 lowers memory)
python -c "
from llama_cpp import Llama
llm = Llama(model_path='deepseek-coder-6.7b-instruct.Q4_K_M.gguf', n_ctx=512)
print(llm('Explain bubble sort in Python.'))
"
```
**Storage Used**: ~4.5 GB.
---
### **4. Storage Optimization Tips**
1. **Use Quantized Models**:
- Prefer `Q4_K_M` or `Q5_K_M` GGUF models (balance size/quality).
- Find them on [TheBloke's Hugging Face](https://huggingface.co/TheBloke).
2. **Store Models on SD Card**:
- Symlink the model to Termux:
```bash
ln -s /storage/XXXX-XXXX/deepseek-coder.gguf ~/deepseek-model.gguf
```
(Replace `XXXX-XXXX` with your SD card path).
3. **Clean Cache**:
```bash
pip cache purge
rm -rf ~/.cache/huggingface
```
4. **Use `termux-setup-storage`**:
Grants Termux access to phone storage for extra space.
---
### **5. Expected Performance**
- **1.3B Model**: ~1-2 tokens/sec on CPU (usable for small tasks).
- **6.7B Model**: ~0.5-1 token/sec (slow but functional).
- **RAM Usage**: 1.3B needs ~1.5GB RAM; 6.7B needs ~6GB (close Termux apps to free memory).
---
### **Alternative: Cloud/API**
If storage is critical, use the **DeepSeek API** (if available) instead of local models:
```python
import requests
response = requests.post("https://api.deepseek.com/v1/chat", json={"model": "deepseek-coder", "messages": [{"role": "user", "content": "Write Fibonacci in Python"}]})
print(response.json())
```
---
### **Summary**
- **For most phones**: 1.3B quantized (~1GB) is practical.
- **High-end phones**: 6.7B quantized (~4GB) if storage allows.
- **Avoid 33B** (unless you have a rooted device with 64GB+ free).
Let me know if you need help setting it up!
---
**Q: What u suggest for android/samsung galaxy a53 model 1.3B or 6.7B ?**
A: For a **Samsung Galaxy A53** (typically with **6GB RAM** and **128GB storage**), heres my recommendation for running **DeepSeek-Coder** locally in Termux:
---
### **Recommended Choice: `1.3B Quantized` (GGUF)**
#### **Why?**
1. **RAM Limits**:
- The A53 has **6GB RAM**, but Android uses ~2-3GB for the OS, leaving ~3-4GB free.
- The **1.3B model** needs ~1.5GB RAM (quantized), while the **6.7B** needs ~6GB (too close to the limit).
2. **Storage**:
- 1.3B quantized: **~0.8GB** (fits easily).
- 6.7B quantized: **~4GB** (manageable but tight if you have other apps/media).
3. **Speed**:
- 1.3B: **~2-3 tokens/sec** (usable for small tasks).
- 6.7B: **~0.5-1 token/sec** (painfully slow on mobile CPU).
---
### **How to Set Up 1.3B in Termux**
```bash
# Install dependencies
pkg update && pkg upgrade
pkg install python git wget
pip install llama-cpp-python
# Download the quantized 1.3B model (Q4_K_M)
wget https://huggingface.co/TheBloke/deepseek-coder-1.3B-instruct-GGUF/resolve/main/deepseek-coder-1.3b-instruct.Q4_K_M.gguf
# Run inference (adjust n_ctx for RAM savings)
python -c "
from llama_cpp import Llama
llm = Llama(model_path='deepseek-coder-1.3b-instruct.Q4_K_M.gguf', n_ctx=512)
print(llm('Write a Python function to check if a number is prime.'))
"
```
---
### **If You Still Want to Try 6.7B**
#### **Requirements**:
- Close all background apps.
- Enable **swap memory** (if rooted) or use **zRAM** (advanced Termux tweaks).
- Expect **very slow speeds** (~1 word every 2 seconds).
```bash
wget https://huggingface.co/TheBloke/deepseek-coder-6.7B-instruct-GGUF/resolve/main/deepseek-coder-6.7b-instruct.Q4_K_M.gguf
python -c "
from llama_cpp import Llama
llm = Llama(model_path='deepseek-coder-6.7b-instruct.Q4_K_M.gguf', n_ctx=256) # lower ctx to save RAM
print(llm('Explain Python decorators briefly.'))
"
```
---
### **Alternatives**
1. **Use the API** (if available):
No storage/RAM limits, but requires internet.
```python
import requests
response = requests.post("https://api.deepseek.com/coder", json={"prompt": "Write a Python calculator"})
print(response.text)
```
2. **Remote Server**:
Run the model on a PC/Raspberry Pi and access it from your phone via `curl`.
---
### **Final Verdict**
- **For daily use**: Stick with **1.3B quantized**. Its the only practical option for your A53.
- **For experiments**: Try 6.7B, but expect crashes/slowness.
- **For heavy tasks**: Use the **DeepSeek web app** or API.