318 lines
11 KiB
Markdown
318 lines
11 KiB
Markdown
<p align="center">
|
||
<img width="300px" alt="DeepSeek Coder" src="docs/deepseekcoder-logo.png">
|
||
</p>
|
||
|
||
Hello! 👽
|
||
|
||
**DeepSeek-Coder** is a powerful AI model designed to assist with coding-related tasks, including code generation, debugging, optimization, and more. Here’s how you can use it:
|
||
|
||
### **1. Online Access (Web & Playground)**
|
||
You can try **DeepSeek-Coder** for free on the official website:
|
||
🔗 [https://deepseek.com](https://deepseek.com)
|
||
|
||
Just type your coding questions (e.g., "Write a Python function to sort a list") and get instant AI-generated responses.
|
||
|
||
### **2. API Access**
|
||
If you want to integrate **DeepSeek-Coder** into your applications, you can use the API. Check the official documentation for details.
|
||
|
||
### **3. Local Deployment (Open-Source Models)**
|
||
DeepSeek provides open-source models like **DeepSeek-Coder 6.7B/33B** on Hugging Face. You can download and run them locally:
|
||
🔗 [Hugging Face Model Hub](https://huggingface.co/deepseek-ai)
|
||
|
||
#### **Example: Running with Transformers**
|
||
```python
|
||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||
|
||
model_name = "deepseek-ai/deepseek-coder-6.7b-instruct"
|
||
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||
model = AutoModelForCausalLM.from_pretrained(model_name)
|
||
|
||
input_text = "Write a Python function to reverse a string."
|
||
inputs = tokenizer(input_text, return_tensors="pt")
|
||
outputs = model.generate(**inputs, max_length=200)
|
||
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
||
```
|
||
|
||
### **4. Supported Features**
|
||
👽 **Code Generation** (Python, C++, Java, etc.)
|
||
👽 **Code Debugging & Explanation**
|
||
👽 **Code Optimization & Refactoring**
|
||
👽 **Docstring & Comment Generation**
|
||
👽 **Algorithm & Data Structure Help**
|
||
|
||
### **5. Tips for Best Results**
|
||
- Be **specific** in your prompts (e.g., "Write a Python function to merge two sorted lists").
|
||
- Provide **context** if needed (e.g., "I'm working with PyTorch, help me fix this CUDA error").
|
||
- Ask for **explanations** if you want to understand the code.
|
||
|
||
---
|
||
|
||
**Q: Can i run deepseekcoder on android-linux?**
|
||
|
||
A: Yes! You can run **DeepSeek-Coder** on an **Android-Linux** environment (e.g., using **Termux** or a **Linux chroot**), but with some limitations depending on the model size and your device's hardware. Here's how:
|
||
|
||
### **Option 1: Running in Termux (Android)**
|
||
#### **Requirements**:
|
||
- **Termux** (from [F-Droid](https://f-droid.org/en/packages/com.termux/))
|
||
- **Python & pip** (install in Termux)
|
||
- **A lightweight model** (e.g., `deepseek-coder-1.3b` or quantized versions)
|
||
|
||
#### **Steps**:
|
||
1. **Install Termux & dependencies**:
|
||
```bash
|
||
pkg update && pkg upgrade
|
||
pkg install python git wget
|
||
pip install transformers torch sentencepiece
|
||
```
|
||
2. **Load the model** (example with `deepseek-coder-1.3b`):
|
||
```python
|
||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||
|
||
model_name = "deepseek-ai/deepseek-coder-1.3b-instruct"
|
||
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
||
model = AutoModelForCausalLM.from_pretrained(model_name)
|
||
|
||
prompt = "Write a Python function to reverse a string."
|
||
inputs = tokenizer(prompt, return_tensors="pt")
|
||
outputs = model.generate(**inputs, max_length=200)
|
||
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
||
```
|
||
- **Note**: Larger models (6.7B/33B) may not fit in RAM on most phones.
|
||
|
||
3. **Use quantized models** (for lower RAM usage):
|
||
- Try **GGUF-quantized** models via `llama.cpp` (works in Termux):
|
||
```bash
|
||
pip install llama-cpp-python
|
||
wget https://huggingface.co/TheBloke/deepseek-coder-6.7B-instruct-GGUF/resolve/main/deepseek-coder-6.7b-instruct.Q4_K_M.gguf
|
||
```
|
||
Then load it with:
|
||
```python
|
||
from llama_cpp import Llama
|
||
llm = Llama(model_path="deepseek-coder-6.7b-instruct.Q4_K_M.gguf")
|
||
print(llm("Write a Python function to reverse a string."))
|
||
```
|
||
|
||
### **Option 2: Linux Deploy (Full Linux on Android)**
|
||
If your device supports it (e.g., with **Linux Deploy** or **UserLAnd**), you can run a full Linux distro (Ubuntu/Debian) and follow standard Linux instructions:
|
||
```bash
|
||
# In the Linux environment
|
||
git clone https://github.com/deepseek-ai/deepseek-coder
|
||
cd deepseek-coder
|
||
pip install -r requirements.txt
|
||
python run_inference.py
|
||
```
|
||
- **Pros**: Full GPU support (if your phone has a Linux-compatible GPU).
|
||
- **Cons**: Complex setup, requires root/unlocked bootloader for some devices.
|
||
|
||
|
||
### **Performance Considerations**
|
||
- **RAM**: 1.3B needs ~3GB RAM, 6.7B needs ~16GB (quantized helps).
|
||
- **Storage**: Models take 2GB+ (1.3B) to 40GB+ (33B).
|
||
- **Speed**: Expect slow inference on CPUs (~1 token/sec).
|
||
|
||
|
||
### **Alternative: Use the API**
|
||
If local execution is too slow, use the **DeepSeek API** (if available) via Python:
|
||
```python
|
||
import requests
|
||
response = requests.post("https://api.deepseek.com/coder", json={"prompt": "Write Python code to reverse a string"})
|
||
print(response.json())
|
||
```
|
||
|
||
---
|
||
|
||
**Q: How storage would be installing deepseek coder thru termux?**
|
||
|
||
A: Installing **DeepSeek-Coder** in **Termux** (Android) requires careful storage management, as AI models are large. Here's a breakdown of storage needs and optimization tips:
|
||
|
||
---
|
||
|
||
### **1. Model Sizes (Approximate)**
|
||
| Model | Disk Space (Full Precision) | Quantized (GGUF) |
|
||
|----------------------|----------------------------|------------------|
|
||
| DeepSeek-Coder 1.3B | ~2.5 GB | ~0.8 GB (Q4_K_M) |
|
||
| DeepSeek-Coder 6.7B | ~13 GB | ~4 GB (Q4_K_M) |
|
||
| DeepSeek-Coder 33B | ~60 GB+ | ~20 GB (Q4_K_M) |
|
||
|
||
**Note**: Quantized models (e.g., GGUF) reduce size but may lose slight accuracy.
|
||
|
||
---
|
||
|
||
### **2. Storage Requirements in Termux**
|
||
- **Termux Limits**:
|
||
- Default storage: ~10-15 GB (varies by device).
|
||
- External SD card support (needs manual setup).
|
||
- **Recommended for Termux**:
|
||
- Use **1.3B model** (quantized: ~0.8 GB) or **6.7B quantized** (~4 GB) if your device has space.
|
||
- Avoid 33B (too large for most phones).
|
||
|
||
---
|
||
|
||
### **3. Step-by-Step Installation (Optimized for Storage)**
|
||
#### **Option A: Small Setup (1.3B Quantized)**
|
||
```bash
|
||
# Install dependencies
|
||
pkg update && pkg upgrade
|
||
pkg install python git wget
|
||
pip install llama-cpp-python
|
||
|
||
# Download a quantized 1.3B model (GGUF format)
|
||
wget https://huggingface.co/TheBloke/deepseek-coder-1.3B-instruct-GGUF/resolve/main/deepseek-coder-1.3b-instruct.Q4_K_M.gguf
|
||
|
||
# Run inference
|
||
python -c "
|
||
from llama_cpp import Llama
|
||
llm = Llama(model_path='deepseek-coder-1.3b-instruct.Q4_K_M.gguf')
|
||
print(llm('Write a Python function to reverse a string.'))
|
||
"
|
||
```
|
||
**Storage Used**: ~1 GB (model + dependencies).
|
||
|
||
---
|
||
|
||
#### **Option B: Medium Setup (6.7B Quantized)**
|
||
```bash
|
||
# Download 6.7B quantized (~4 GB)
|
||
wget https://huggingface.co/TheBloke/deepseek-coder-6.7B-instruct-GGUF/resolve/main/deepseek-coder-6.7b-instruct.Q4_K_M.gguf
|
||
|
||
# Run with reduced RAM usage (--n_ctx 512 lowers memory)
|
||
python -c "
|
||
from llama_cpp import Llama
|
||
llm = Llama(model_path='deepseek-coder-6.7b-instruct.Q4_K_M.gguf', n_ctx=512)
|
||
print(llm('Explain bubble sort in Python.'))
|
||
"
|
||
```
|
||
**Storage Used**: ~4.5 GB.
|
||
|
||
---
|
||
|
||
### **4. Storage Optimization Tips**
|
||
1. **Use Quantized Models**:
|
||
- Prefer `Q4_K_M` or `Q5_K_M` GGUF models (balance size/quality).
|
||
- Find them on [TheBloke's Hugging Face](https://huggingface.co/TheBloke).
|
||
|
||
2. **Store Models on SD Card**:
|
||
- Symlink the model to Termux:
|
||
```bash
|
||
ln -s /storage/XXXX-XXXX/deepseek-coder.gguf ~/deepseek-model.gguf
|
||
```
|
||
(Replace `XXXX-XXXX` with your SD card path).
|
||
|
||
3. **Clean Cache**:
|
||
```bash
|
||
pip cache purge
|
||
rm -rf ~/.cache/huggingface
|
||
```
|
||
|
||
4. **Use `termux-setup-storage`**:
|
||
Grants Termux access to phone storage for extra space.
|
||
|
||
---
|
||
|
||
### **5. Expected Performance**
|
||
- **1.3B Model**: ~1-2 tokens/sec on CPU (usable for small tasks).
|
||
- **6.7B Model**: ~0.5-1 token/sec (slow but functional).
|
||
- **RAM Usage**: 1.3B needs ~1.5GB RAM; 6.7B needs ~6GB (close Termux apps to free memory).
|
||
|
||
---
|
||
|
||
### **Alternative: Cloud/API**
|
||
If storage is critical, use the **DeepSeek API** (if available) instead of local models:
|
||
```python
|
||
import requests
|
||
response = requests.post("https://api.deepseek.com/v1/chat", json={"model": "deepseek-coder", "messages": [{"role": "user", "content": "Write Fibonacci in Python"}]})
|
||
print(response.json())
|
||
```
|
||
|
||
---
|
||
|
||
### **Summary**
|
||
- **For most phones**: 1.3B quantized (~1GB) is practical.
|
||
- **High-end phones**: 6.7B quantized (~4GB) if storage allows.
|
||
- **Avoid 33B** (unless you have a rooted device with 64GB+ free).
|
||
|
||
Let me know if you need help setting it up!
|
||
|
||
---
|
||
|
||
**Q: What u suggest for android/samsung galaxy a53 model 1.3B or 6.7B ?**
|
||
|
||
A: For a **Samsung Galaxy A53** (typically with **6GB RAM** and **128GB storage**), here’s my recommendation for running **DeepSeek-Coder** locally in Termux:
|
||
|
||
---
|
||
|
||
### **Recommended Choice: `1.3B Quantized` (GGUF)**
|
||
#### **Why?**
|
||
1. **RAM Limits**:
|
||
- The A53 has **6GB RAM**, but Android uses ~2-3GB for the OS, leaving ~3-4GB free.
|
||
- The **1.3B model** needs ~1.5GB RAM (quantized), while the **6.7B** needs ~6GB (too close to the limit).
|
||
|
||
2. **Storage**:
|
||
- 1.3B quantized: **~0.8GB** (fits easily).
|
||
- 6.7B quantized: **~4GB** (manageable but tight if you have other apps/media).
|
||
|
||
3. **Speed**:
|
||
- 1.3B: **~2-3 tokens/sec** (usable for small tasks).
|
||
- 6.7B: **~0.5-1 token/sec** (painfully slow on mobile CPU).
|
||
|
||
---
|
||
|
||
### **How to Set Up 1.3B in Termux**
|
||
```bash
|
||
# Install dependencies
|
||
pkg update && pkg upgrade
|
||
pkg install python git wget
|
||
pip install llama-cpp-python
|
||
|
||
# Download the quantized 1.3B model (Q4_K_M)
|
||
wget https://huggingface.co/TheBloke/deepseek-coder-1.3B-instruct-GGUF/resolve/main/deepseek-coder-1.3b-instruct.Q4_K_M.gguf
|
||
|
||
# Run inference (adjust n_ctx for RAM savings)
|
||
python -c "
|
||
from llama_cpp import Llama
|
||
llm = Llama(model_path='deepseek-coder-1.3b-instruct.Q4_K_M.gguf', n_ctx=512)
|
||
print(llm('Write a Python function to check if a number is prime.'))
|
||
"
|
||
```
|
||
|
||
---
|
||
|
||
### **If You Still Want to Try 6.7B**
|
||
#### **Requirements**:
|
||
- Close all background apps.
|
||
- Enable **swap memory** (if rooted) or use **zRAM** (advanced Termux tweaks).
|
||
- Expect **very slow speeds** (~1 word every 2 seconds).
|
||
|
||
```bash
|
||
wget https://huggingface.co/TheBloke/deepseek-coder-6.7B-instruct-GGUF/resolve/main/deepseek-coder-6.7b-instruct.Q4_K_M.gguf
|
||
python -c "
|
||
from llama_cpp import Llama
|
||
llm = Llama(model_path='deepseek-coder-6.7b-instruct.Q4_K_M.gguf', n_ctx=256) # lower ctx to save RAM
|
||
print(llm('Explain Python decorators briefly.'))
|
||
"
|
||
```
|
||
|
||
---
|
||
|
||
### **Alternatives**
|
||
1. **Use the API** (if available):
|
||
No storage/RAM limits, but requires internet.
|
||
```python
|
||
import requests
|
||
response = requests.post("https://api.deepseek.com/coder", json={"prompt": "Write a Python calculator"})
|
||
print(response.text)
|
||
```
|
||
|
||
2. **Remote Server**:
|
||
Run the model on a PC/Raspberry Pi and access it from your phone via `curl`.
|
||
|
||
---
|
||
|
||
### **Final Verdict**
|
||
- **For daily use**: Stick with **1.3B quantized**. It’s the only practical option for your A53.
|
||
- **For experiments**: Try 6.7B, but expect crashes/slowness.
|
||
- **For heavy tasks**: Use the **DeepSeek web app** or API.
|
||
|
||
|
||
|